
Copyright 2000, Paulo Franca – Download free from www.franca.com

129

PART V

DEALING WITH NUMBERS

In Part V, you will further develop your skills in handling numeric data. Thanks to the
special software designed for this book, you will be able to learn numeric manipulation by
producing graphics and animations. You will learn how to program relatively complex numeric
expressions before moving on to manipulating Screen Objects and animations. A limited knowledge
of geometry will come in handy.

SKILL

THIRTEEN

MANIPULATING NUMERIC EXPRESSIONS

• Identifying the numeric types used in C++
• Writing and evaluating expressions
• Using math functions

In SKILL thirteen, we will deepen your knowledge of using numbers. You will learn how
to determine what types of variables to use for your data, how to manipulate values in variables by
using expressions, and how to use the math function library. Many applications require extensive
numeric manipulation. In SKILLs fourteen and fifteen, you will be provided with interesting and
relevant opportunities to practice your newfound skills in manipulating numeric expressions.

Deepening the Discussion of Numbers

Very often, you will need to manipulate numbers with your computer. In fact, when
computers were first put into use, all their work related to numeric computation. Computers were
used to compute trajectories and integrals, to solve equations, and so on. Computers represent
information in numeric form, but numbers can represent colors, shapes, sounds, and nearly
anything else you can imagine.

Since many applications require extensive use of numeric data, we will spend some time in
this skill to explore numeric manipulation. To make the subject more interesting, our applications
in SKILLs fourteen and fifteen will involve graphics and animations.

Identifying Numeric Types

Numeric types and expressions were introduced briefly in SKILL five. In the following
sections, we shall deepen the discussion.

You don’t usually manipulate numbers that are represented by an arbitrary number of
digits in a computer. It is much simpler for the computer to set apart some space in its memory for

Copyright 2000, Paulo Franca – Download free from www.franca.com

130

numbers of a fixed size, according to the type of number with which you want to work. This
process is similar to how some hand calculators work. If the calculator has an eight-digit display,
you cannot operate with numbers that are longer than eight digits.

Storing Integer Numbers

As you know, computers can operate with integers and floating point numbers. To store
integers, there are the types int and long. Here is a summary of how they work:

• We have already used the type int in previous skills. To store an integer number (of
type int), the computer sets aside a space in which you can store an integer number.

• Check your particular compiler for the range of numbers you can store. Most
compilers use 16 bits to represent ints, which results in a range of numbers
from –32,768 to +32,767. Other compilers may be able to accommodate
larger ranges of numbers.

• The type long stands for long int, and tells the compiler that you want to deal with
an integer that has a wider range. In that case, twice the space will be used to store this
kind of number, and then you may deal with a wider range of numbers.

• Check your particular compiler for the range of numbers you can store. Most
compilers use 32 bits to represent long integers, which results in a range of
numbers from –2,147,483,648 to +2,147,483,647. In any event, long
integers take up twice the space in memory, and can accommodate a much
larger range of numbers than an int.

� Don't try to memorize these numbers—just remember that you can go to
approximately two billion each way.

Unsigned integers
If you are dealing with a variable that takes only positive values (for example, the number

of students in a class), you can stretch the range of an int (or long integer) by prefixing the
declaration with the keyword unsigned. For example:
unsigned int number_of_students;

Since you don’t need to accommodate the negative values, the computer will be able to
accommodate a positive number that is twice as large as the largest number that you could
accommodate previously. If your compiler has an int range from –32,768 to +32,767, the
unsigned int can range from 0 to +65,535.

� You donít have to use unsigned integers if you don’t need the extra
values. If you are dealing with the number of students in a class, it is
likely that 32,767 integers will be enough.

Short integers
If you really want to be savvy about memory, you can declare variables that are expected

to accommodate very small integer values by prefixing the declaration with the keyword short.
For example:

Copyright 2000, Paulo Franca – Download free from www.franca.com

131

short int color;

� Check your compiler for the range. Most compilers use 8 bits, which will
accommodate integers from –128 to +127. You can combine unsigned
and short.

Storing Floating Point Numbers

Some problems arise in which integer numbers are not appropriate. Often, you may need
to use a decimal point and/or an exponent. In these cases, you have to resort to floating point
numbers.

• The standard type in which to store floating point numbers is float. The type
float takes up a little more space in the computer memory than int does, and,
since it is a bit more complicated, more time is consumed to perform operations with
floating point numbers than with integers. Again, there are some limitations. The
regular floating point numbers may range from 3.4◊10-38 to 3.4◊1038, may be either
positive or negative, and may hold up to seven digits of precision. If you need more
than that, do not despair….

� Check your compiler for the actual range. It may vary from one compiler
to another.

WHAT DO YOU MEAN—SEVEN DIGITS?

If you try to store the number 1.0000001, the computer will not store the complete
number. Only the seven most significant digits (1.000000) will be stored. Anything beyond
that is not guaranteed, because only seven digits were stored. However, it has nothing to do
with the position of the decimal point; the same thing would happen with the number
234.56789, which would end up being 234.5678.

• Another type that is useful for dealing with large floating point numbers is the type
double. It works just like the type float, but it is able to store numbers that have
more significant digits and, depending on the compiler, a wider range of exponents.

• If you have to manipulate numbers with even more digits, you can prefix double
with the keyword long. Again, check your compiler for the actual range.

Using Constants

Since you can refer to integer and floating point numbers, you may also need to use integer
and floating point constants.

Constants are values that cannot change during the program execution. You will learn
three ways to manipulate constant values in your programs:

• Literal constants literally write the value.
• Labeled constants are exactly like variables to which you give a name and assign a

value, but you instruct the compiler to prevent any change to their value.
• Enumerated constants are a set of labeled constants to which you can assign a specific

type and which use a list of names to denote the value.

Copyright 2000, Paulo Franca – Download free from www.franca.com

132

Integer constants
You write an integer constant pretty much like you write an integer number in everyday

math. Observe the following items:
• You can precede the number with a + sign or a – sign.
• You cannot use commas or decimal points.
• You cannot leave spaces between the digits.
• You should avoid preceding the number with irrelevant zeros, which may cause

confusion.

� Be aware of leading zeros! Leading zeros are used in C++ to identify
integer constants that are expressed in octal notation. A value expressed
in this notation is different from everyday decimal notation. For example,
a constant expressed as 010 in C++ will be assumed to be in octal
notation, resulting in the value 8 in decimal notation.

Floating point constants
You can write a floating point constant in C++ in two forms. The first form is similar to

our everyday notation:
• You can precede the number with a + sign or a – sign.
• You can include one (and only one) decimal point.
• You cannot use commas or spaces between the digits.
Here are some examples of floating point constants:

35.
73.12
0.001
+54.3
–0.2
The second form is exponential notation, which is similar to how we represent large

numbers in physics. This notation consists of two parts: the mantissa, which is represented by a
floating point number, as in the examples above, and the exponent, which consists of the letter E
followed by an integer number that represents the exponent.

For example, the following number:

6.02◊1023

can be written in C++ as 6.02 E23 or 6.02E+23. Both parts—the mantissa and the
exponent—can have a sign.

Labeled constants
It is possible to use an identifier to denote a constant value. If you need to use the value

3.1416 many times in your program, you may be better off declaring as follows:
float pi=3.1416;

and using pi instead of 3.1416 throughout your program. This idea is pretty cool! The only
slight problem you may have is if this value of pi is erroneously altered in the program. You can
avoid having a value altered by including the keyword const in the variable declaration. If you
declare as follows:

Copyright 2000, Paulo Franca – Download free from www.franca.com

133

const float pi=3.1416;
the compiler will not allow changes to this value. Any statement that attempts to alter the value of
pi will cause an error.

Another convenience of const is that sometimes you may want to use a different value
for a particular quantity. For example, you may decide to use the more precise value 3.14159,
instead of using 3.1416. It is much simpler to change just the declaration than to look through the
entire program and change the values!

const lets you use a variable whose value is fixed during program execution.

Enumerated constants
Enumerated constants are especially useful when a set of integers is used as a code. Take

the example of the directions north, east, south, and west, which may be assigned the codes 0, 1, 2,
and 3. To avoid dealing with the numbers in the program, we could declare as follows:
int N=0,E=1,S=2,W=3;

Or, better still:
const int N=0,E=1,S=2,W=3;

In either case, we could use the identifiers N, E, S, and W instead of the codes in the
program. For example:
if(direction==N) ...

A simpler way to achieve the same result, with a few extra benefits, is to use the enum
constant declaration:
enum type { identifiers list };

Or, in our case:
enum directions {N,E,S,W};

This declares the identifiers that are contained in the list to be constants of type int, and
automatically initializes them to 0, 1, 2, and 3. Unless otherwise specified, the first identifier is
initialized to 0, and each other identifier is initialized to the next integer.

The type is optional. In our example, directions could be omitted. The advantage of
using the type is that you may declare a variable in the program that has this new type. For
example:
directions comingfrom,goingto;

allows you to assign any direction to these new variables. Therefore, if your program has
assignments of the following form:
comingfrom=N;
goingto=S;

these statements will be considered correct. However, if you try to assign anything different
(including an integer), the compiler will issue a warning. In the following example:
comingfrom=8;
goingto=2;

the compiler may suspect that you are doing something wrong.
Finally, it is possible to overrule the default sequence by specifying which value should be

assigned to each identifier. For example:
enum colors (red=1,green,pink=5,yellow);

assigns value 1 to red, value 2 to green (previous value plus 1), value 5 to pink (as specified), and
value 6 to yellow.

Reviewing Expressions

The rules for performing arithmetic operations and assigning values are reviewed here with
some examples. For the examples in this section, let’s assume that we have declared as follows:

Copyright 2000, Paulo Franca – Download free from www.franca.com

134

int i, j, k;
float x,y,z;

Mixing Types, Variables, and Constants

You can combine variables and constants of either type in expressions. For example:
float x=0.5,y;
int i=5;
y=x-i+1;

takes the value of x, subtracts from it the value of i, and adds 1. The result will be stored as the
new value of y.

So far, this is very close to what you would expect. In fact, the way we represent
arithmetic expressions in C++ (as well as in most other computer languages) bears a close
similarity to the way we do it in math. There are a few things that you must know before we
examine any rules:

• In math, you can omit the multiplication operator: 3xy means 3 times x times y.
• In C++, we cannot do this. There is no way for a compiler to tell whether you

have an object xy or x times y. Therefore, we must explicitly use the
multiplication operator. Which symbol should we use? We cannot use x,
because it could signify an object called x. Therefore, the multiplication
operator is represented by *.

• In math, you can write values above and below a bar to indicate divisions.
• In a program, this is inconvenient, because we type from a keyboard. Instead,

we use the slash symbol (/) to denote division. However, dividend and divisor
are supposed to be in the same line. For example, x/y means that you should
take the value of x and divide it by the value of y.

• In math, you don’t usually differentiate between an integer and a floating point number
when you compute an expression.

• In most programming languages, integers and floating point numbers are
treated quite differently. The result of an arithmetic operation that involves
two integers is always an integer! Does this make any difference? Of course it
does! If you divide 3./2. (notice that both are floating point numbers), the
result is 1.5. If you divide 3/2 (notice that both are now integers of type int),
the result is 1, because only the integer part is considered. Similar problems
may happen in other operations.

For example:
int i,j;

i=30000;
j=i+i;

results in a value of 60,000, which most likely exceeds the range of an int.
Since you are now aware of these differences, we can actually move on to our rules.

Using Arithmetic Operators

The following arithmetic operators can be used in expressions:

+ addition

Copyright 2000, Paulo Franca – Download free from www.franca.com

135

– subtraction
* multiplication
/ division
% remainder of division

In addition, the assignment operator (=) can be used to assign the result of an expression to the
variable on its left side. Here are some examples:
x=3*a+1; // Multiply a by 3, add 1, and store result in x
y=a+1*3; // Multiply 1 by 3, add to a, and store result in y

The second example illustrates that in expressions in C++, just like in expressions in math,
multiplication takes priority over addition. Therefore, multiplication is done first. You may
remember that an expression such as x+3a means that you should multiply a by 3, then add the
result to x.

The rules for precedence are as follows:
• Higher priority operators are *, /, and %.
• Lower priority operators are + and –.
• Higher priority operations are executed first.
• If more than one operation has the same priority, execute from left to right.
You can explicitly specify the priority by using parentheses:

3*(x+1); // Add x to 1, then multiply by 3
3*x+1; // Multiply x by 3, then add 1

If you need to, you can also nest parentheses in parentheses. In this case, the inner
parentheses are solved first. For example:
3*(x/(y+1) + 4);

adds 1 to y, then divides x by this result. Then, it adds 4. Finally, this result is multiplied by 3.
Notice that x is divided by y+1 and not by y+1+4, as you might think if you were distracted.

Assigning Results

The assignment operator (=) can be used in an expression to take the result (shown on the
right side of the =) and assign it to the variable on the left side. Remember that the meaning of the
operator is not the same as its meaning in a mathematical equation! For example:
s=s+3;

is correct. But the following expression:
s+3=s;

is not acceptable in C++!

Generating results
Besides moving a value from one place to another, the assignment operator also generates

a result that has the value of the value that was moved. In other words, the following statement:
s=3;

besides storing the value 3 in the variable s, will generate a result of 3. This is why the compiler
considers the following statement to be correct in terms of syntax:
if(s=3) ...

Instead of comparing s to 3, this statement will move 3 to s, and generate 3 as a result.
Since 3 is nonzero, it gives a true result inside the if.

Multiple assignments
Since each assignment generates a result, it is possible to write the following statement:

x=y=1;
because the assignment operation:

Copyright 2000, Paulo Franca – Download free from www.franca.com

136

y=1;
generates a result of 1. This result will be used by the next assignment operator.

� Multiple assignments are executed from right to left.

Conversions
If an assignment operation involves operands of different types, the result will be converted

to assume the type of the variable on the left side of the assignment operator. For example, suppose
that we have the following expressions:
int m=1,j=2,k;
float x=0.5,y;

An expression such as the following one:
m=x;

will have a result of 0.5, which will be converted to int so it can be stored in m. The new value of
m will then be zero. Now consider the following expression:
x=m=x;

which will result in a value of 0 for both m and x.
Finally, how about the following expression:

m=x=x;
What do you think will be the result?

Mixing Types

Expressions may contain objects of different types. When an operation involves operands
of different types, the compiler tries to “promote” one of them. For example, if a float is to be
added to an int, the int is promoted to float, and then the operation takes place.

PROMOTIONS AND DEMOTIONS

Although it may not look important to you, the compiler automatically converts
one of the operands so the operation can take place. When an expression calls for an
operation between an integer and a floating point number, the integer is first converted to
the floating point equivalent, and then the operation takes place (we say that the int was
“promoted” to float, in this case). Similarly, if a float result is to be assigned to an
int, the compiler “demotes” the float result by truncating its decimal part and
converting it to an integer.

You can control the conversions yourself by using typecasting. To convert a
variable or an expression to another type, write the type into which you want the variable
or the expression cast in parentheses immediately before the variable or the expression.

For example, x=(float)m/(float)j; guarantees that both m and j will be
converted to float before they are divided.

Returning Values in Functions

Expressions can also use functions. Any function can generate a result of any type, and
that result can be used as part of an expression. For a function to generate a result, you must do the
following things:

Copyright 2000, Paulo Franca – Download free from www.franca.com

137

• Specify the type of the result. For example, the type may be int, float, long, etc.
void means that nothing will be returned as a result.

• Use a return statement to indicate the result you are returning.

The return Statement

The return statement simply consists of the keyword return followed by an
expression. The value of the expression is returned as a result. After executing the return, the
function ends—the next statement in the sequence (if there is one) will not be executed.

For example, suppose that you want to create a function to compute the position of a body
in free fall. The formula in physics is as follows:

h=Ωgt
2

in which h is the height, g is the gravity, and t is the time. Since g can be assumed to be constant
near the earth’s surface (32 feet per second squared or 9.81 meters per second squared), for any
given time t, you can compute a value for h. In this case, you want h to be the result of this
function. What is the type of this result? You probably want it to be a float, since the height
may be measured in feet or meters, and it may have a fractional part.

If you call this function height, the actual code could be as follows:
float height (float t)
{
 return 0.5*g* t * t;
}

Instead of 1/2, I chose to use 0.5, which is the same. Beware! If you write 1/2, which
implies the division of one int (1) by another (2), it will generate an int result equal to zero.
This is not what we want! You can avoid this problem by making one or both of the operands a
float. For example, 1./2 will work. However, every time the computer evaluates the formula, it
will divide 1 by 2 again. It may be a little better to use 0.5.

C++ offers no operator for computing the square of a value. The simple solution is to
recall that squaring t is the same as t times t. You may also use the function sqr(t), as seen in
the next section.

Using the math.h Library

Several of the mathematical functions that are used most are included in the header file
math.h. Some of the most important functions are summarized below.

These functions take a double floating point argument (represented by x) and return a
double floating point result. Since the conversion is automatic, you can supply arguments such as
float and assign results to float, as well.

There are trigonometric functions to compute the sine, cosine, and tangent, as well as the
arc sine, arc cosine, and arc tangent of a given argument. Be aware that the arcs must be specified
in radians. Table 13.1 shows all the functions.

Copyright 2000, Paulo Franca – Download free from www.franca.com

138

Table 13.1: Functions in math.h

FUNCTION ITS PURPOSE
sin(x) Returns the sine of x
cos(x) Returns the cosine of x
tan(x) Returns the tangent of x
asin(x) Returns the arc sine of x
acos(x) Returns the arc cosine of x
atan(x) Returns the arc tangent of x
exp(x) Returns the exponential of x
log(x) Returns the natural (base e) logarithm of x
log10(x) Returns the decimal logarithm of x
sqrt(x) Returns the square root of x
sqr(x) Returns the square of x
fabs(x) Returns the absolute value of floating point x
ceil(x) Returns the round-up value of x
floor(x) Returns the round-down value of x
rand() Returns a random integer (the range of the integer

will vary with the compiler)
You may be interested in other mathematical functions that are included in math.h.

However, we will not discuss them here.

An Example

You could use the program below to compute the square root of a value that is input from
the keyboard:
#include "franca.h"
#include <math.h>
void mainprog()
{
 float value,root;
 value=ask("Enter a positive value:");
 if (value>=0)
 {
 root=sqrt(value);
 Cout<<root;
 }
 else
 {
 Cout<<"Sorry, negative value !";
 }
}

Copyright 2000, Paulo Franca – Download free from www.franca.com

139

Are You Experienced?

Now you can…

Choose the appropriate type of variables to handle your data

Use expressions to compute results

Use functions from the math.h library in your programs

Copyright 2000, Paulo Franca – Download free from www.franca.com

140

SKILL

FOURTEEN

WORKING WITH GRAPHICS

• Specifying coordinates to locate points on the computer screen
• Drawing and showing Screen Objects
• Moving Screen Objects
• Changing coordinate systems

In Skill 14, we will work with graphics, because they are an interesting application of
numeric manipulation, and because they are a subject of growing importance in the computer field.

Novices usually cannot afford to learn how to use graphics because of the complexities
involved. However, thanks to our special software, it is very easy to show and manipulate objects
such as circles, squares, and boxes. A special class of objects—Screen Objects—will be used to
help you improve your skills with graphics and numeric manipulation.

� Objects of class Circle, Square, Stage, and others are not available
in standard C++. They are only available with the special software
developed for this book.

Dealing with Graphics

One of the most interesting applications of numeric computation is the manipulation of
graphics on the computer screen. Graphics manipulation will serve two purposes:

• You will learn (and practice) how to deal with graphics, which is a very interesting
thing in itself.

• You will learn (and practice) several aspects of numeric computation.

Locating Points on the Screen

To understand how graphics objects work, we must first understand how to locate points
on the computer screen. Since the screen is a two-dimensional object, coordinates to locate a point
on it must include two numbers, the x coordinate and the y coordinate.

This coordinate system is essentially the same one that was used in the short project in
Skill 12 to place and locate the robot in a room.

On the computer screen, the point of origin is the upper-left corner—by definition, the
point (0,0). The x coordinate increases from left to right (just like the convention used in geometry),
but the y coordinate increases from top to bottom (unlike the convention used in geometry).

Copyright 2000, Paulo Franca – Download free from www.franca.com

141

Coordinate Units

Only a finite number of points can be represented on the computer screen. Not only is the

size of the screen finite, but there is a minimum distance between points. The actual number of
points may vary according to the computer display adapter that you are using. For example, if you
are using a computer with a screen resolution of 1,024◊768, your screen can accommodate 1,024
points in a horizontal line and 768 points in a vertical line. Regardless of the size of your monitor’s
screen, your computer will be working with one given resolution. Figure 14.1 shows the most
common resolutions available.

Since the number of points that can be represented in each line is finite, it is logical to use
the actual number of points that can be drawn between two points as the distance between them.
This is called the pixel coordinate system.

� Pixel stands for picture element—a point that can be represented on the
screen in a given color.

It is clear that it is possible to transform coordinates so you can work with inches or
centimeters, instead of pixels. Changing coordinate systems will be studied later in this Skill.

In this pixel coordinate system, the coordinates of a given point are determined by the
horizontal and vertical distances, measured in the number of points (pixels), from the point of
origin in the upper-left corner of the screen to the given point.

Remember that, contrary to the usual geometric notation, the vertical coordinates increase
from top to bottom (don’t let this worry you—we will learn how to change the coordinate system
later).

Drawing Screen Objects

To explore graphics applications, I have prepared a class of Screen Objects. This class is
also included in the header file franca.h. Some of the interesting Screen Objects that we will
use are as follows:

• Boxes (you used these in Skill 2)
• Squares
• Circles
If the object is a square or a circle, it is located on the screen by the coordinates of its

center. If it is a box, it is located by the coordinates of its upper-left corner.
There are a few things that you can do with Screen Objects:
• You can place them anywhere on the screen. place(x,y) places an object’s center

at coordinates (x,y). For example, ball.place(20,20);.

Fig 14.1 Common Screen Resolutions

Copyright 2000, Paulo Franca – Download free from www.franca.com

142

• You can show them on the screen (objects are not automatically shown). The show()
function draws the object at its current location. For example, ball.show();.

• You can erase them from the screen. erase() erases the object by painting it white
in its current location. For example, ball.erase();. Be sure not to erase the
object before moving it.

• You can resize them. Screen Objects are created with a default size of 20. You may
specify one or two arguments when resizing. If only one argument is specified—for
example, ball.resize(40)—both dimensions (width and height) change to the
same value. Otherwise, width and height will both be changed. For example,
ball.resize(40,30) will transform the object into an ellipsis with a height of
40 and a width of 30. There are two functions to resize, resize and absize. The
function resize is affected by any scales that you may have set up; absize is not
affected by scales.

• You can change their color. By default, Screen Objects are created with a white fill
color and a black contour color. You can specify one color to change the fill and the
contour to the same color—for example, ball.color(2)—or you can specify two
colors to change each to a different color—for example, ball.color(2,4).

In addition, there are specific things you can do with a Box object:
• You can “say” something inside the box. For example, if message is declared to be a

Box, message.say(“Here!”); displays the string Here! in the box. You may
also use an integer or floating point number as an argument.

• You can provide a “label” for the box. Labels identify the kind of messages for which
the box is being used. The labels are written above the message in the box. The
statement message.label(“Your change:”); followed by
message.say(change); displays a box with a label and a message.

For example, if the value of change is 12.45, the box above would look as follows:

Your change:
12.45
Boxes behave somewhat differently, because the box is automatically drawn when you

want to say something. In other words, you don’t have to show a box. Remember that box
coordinates refer to the upper-left corner of the box, and not to the center.

It is also possible to change the point of origin and the scale. We will study these shortly.
Tables 14.1 and 14.2 summarize the orders you can give to Screen Objects.

Table 14.1: Orders You Can Give to a Screen Object

MESSAGE ITS PURPOSE ARGUMENTS
place(float,float) Places object x,y coordinates
show() Shows object on screen None
erase() Erases object from screen None
resize(float) Resizes object New size
absize(float) Resizes without scaling New size
color(int,int) Changes object’s color Colors
scale(float,float) Changes scales New scales
origin(float,float) Changes point of origin x,y coordinates

Copyright 2000, Paulo Franca – Download free from www.franca.com

143

Table 14.2: Orders You Can Give to a Box Object in Particular

MESSAGE ITS PURPOSE ARGUMENTS
label(“Label”) Writes a label A string of characters or an identifier

representing a string of characters
say(“Sentence”) Writes a sentence A string of characters or an identifier

representing a string of characters
resize(float) Changes object’s

length
New length

Since boxes are Screen Objects, you can also place(), show(), and erase() them.
When you declare a Circle, it is assumed by default that the diameter is 20 pixels. If

you want a circle with a different size, you can resize it.
Circle mycircle;
mycircle.resize(10);

creates a circle with a diameter of 10 pixels.
In a similar way, a Square is assumed to have a default side of 20 pixels (notice that this

is the same as the circle’s default diameter).

Adding Color

Screen Objects can be drawn using different colors. There may be two colors in an object,
the fill color and the contour color. For example, the object may be a circle of red delimited by a
black line. The colors are denoted by the following codes:

0 White
1 Red
2 Lime green
3 Blue
4 Light blue
5 Pink
6 Yellow
7 Black

It may be a good idea to use the following statement in your programs:
enum (white,red,green,blue,lightblue,pink,yellow,black);

If you use a number greater than seven, the remainder of the division by seven is used as the code.

Defaults

Here are some default assumptions when Screen Objects are created:
• Boxes are stacked vertically on the right side of the screen; other objects are positioned

at (0,0).
• All objects are created with a white fill color and a black contour color.

Using Integer Values

Even though we are now dealing with coordinates in pixels, Screen Objects support
coordinates and sizes with fractional parts—float values. If you use integer values, the compiler

Copyright 2000, Paulo Franca – Download free from www.franca.com

144

automatically converts them to floating point values. It is important to learn how to use float,
because we will use it later to make scale conversions.

The piece of program below creates a circle, places it at (50,50), and shows it on the
screen.
#include "franca.h"
void mainprog()
{
 int x,y;
 x=50;
 y=50;
 Circle mycircle;
 mycircle.place(x,y);
 mycircle.show()
}

Remember that you have to declare the objects you want to use. You do this in the same
way that you have already done it with other classes of objects.

As an improvement to this program, you can ask for the circle coordinates and show them
in boxes. This is shown in the program c5circ1.cpp. If you execute this program and enter the
coordinates (50,100), your computer screen should look like Figure 14.2.
#include "franca.h"
// c5circ1.cpp

// This program draws circles on the screen
// at locations specified by the user.
void mainprog()
{
 Box coordx("X:"),coordy("Y:"); // Use boxes for
 // x and y coordinates
 int x,y; // Declare coordinates
 Circle mycircle; // Declare a circle
 do
 {
 x=ask("Enter x coordinate:");
 y=ask("Enter y coordinate:");
 mycircle.place(x,y); // Put the circle in place
 mycircle.show(); // Show the circle
 coordx.say(x); // Write coordinates
 // in boxes
 coordy.say(y);
 }
 while (yesno("Wanna try again?"));
}

Notice that two new objects are declared, coordx and coordy. Both objects are of type
Box, as indicated in their declaration. The box coordx will be used to display the x coordinate of
the circle, and the box coordy will be used to display the y coordinate of the circle. The boxes
could be placed anywhere on the screen; they are automatically positioned by default.

The following lines:
x=ask("Enter x coordinate:");
y=ask("Enter y coordinate:");

request that you provide values for x and y. This lets you place the circle anywhere on the screen,
instead of at (50,50), as before. The main piece of code is surrounded by the do/while
repetition:

Copyright 2000, Paulo Franca – Download free from www.franca.com

145

do
{
...
}
while(yesno("wanna try again?"));

What does this do? The loop repeats as long as the condition is true. Thus, as long as you
choose yes, the program will keep asking for new coordinates and drawing circles. If, instead, you
choose no, the loop will end.

Erasing

Each time we draw a new circle, the old drawing remains. What should we do if we don’t
want to see it anymore? How about using the erase function? Can you try it? It is quite simple!
All you have to do is to include the following statement:
mycircle.erase();

in a convenient place in the program.
What do I mean by convenient place?
• You cannot erase the circle immediately after showing it. If you do so, you will not

have enough time to see it. You could use this solution by declaring a Clock and
telling the clock to wait a few seconds (objects of class Clock were introduced in
Skill 2).

• You cannot erase the circle after placing it at the new coordinates. The erase
function works by drawing a white circle on top of the old one to erase it. If you move
the circle to a new place, the white circle will be drawn in the new place.

Besides using a Clock object, you may consider two alternatives:
• You can erase the circle immediately before changing its place. The first time that the

program goes through the loop, you will be erasing the circle before actually drawing

Fig 14.2 Result of c5circ1.cpp

Copyright 2000, Paulo Franca – Download free from www.franca.com

146

it or even giving coordinates to it. There is nothing wrong with erasing before showing.
However, erasing before placing the circle is the same as erasing in the wrong place!

� Oops! If the circle is at the default (0,0) location and you try to erase it,
you will get an Object out of range error message. This is because part
of the circle will be off the screen.

• You can erase the circle after asking the yes or no question, but before restarting the
loop! How? In this case, you would pose the question before you end the loop, and
then save the answer. As a matter of fact, the yes function returns an integer value (1
means yes, 0 means no). You may use an additional variable to save this answer:

int answer;
 ...
 do
 {
 ...
 answer=yes("Wanna try again?");
 mycircle.erase();
 } while (answer);

Error Messages

Any attempt to draw a point outside the
valid screen region will generate an error message
in a dialog box. The Object out of range error
message is shown in Figure 14.3. The wrong
coordinate (x or y) will be displayed in the upper-
left corner of the screen, and you will be requested
to check the object that is out of range.

Try These for Fun…

• Modify the program c5circ1.cpp to erase each circle before drawing the next one.
• Modify the program c5circ1.cpp to draw two circles (using two sets of

coordinates), instead of drawing one circle. Both circles should be erased before
drawing the next two circles.

• Write a program (or modify the program c5circ1.cpp) to draw several circles in a
horizontal line. You should request the coordinates (x,y) of the first circle, the number
of circles to draw, and the distance between them. (Hint: you can declare only one
circle in this case.)

• Include a Clock object in c5circ1.cpp in the problem above to draw circles at 2-
second intervals.

Fig 14.3 Object

Copyright 2000, Paulo Franca – Download free from www.franca.com

147

Moving Screen Objects

By now you should know how to draw and erase Screen Objects. The next thing we want
to do is to move them around. Just like in movies or in cartoons, the illusion of movement is caused
by drawing several images very quickly. This was already done with the athletes in Skill 1.

You can achieve a high-quality animation by displaying 30 frames per second. What does
30 frames per second mean? In one second, you change your drawing 30 times. In other words,
each drawing should last 1/30 of a second! If you have a very complex picture, you need a very
fast computer to draw the next picture in less than 1/30 of a second. Since our pictures are simple,
I don’t expect you to run into this kind of problem.

To get started, look at the program c5circ2.cpp, which implements a very simple
animation. If you run this program, you should see a circle moving on the screen.

Try running this program using the coordinates x=100 and y=100, and using 300 circles.
Experiment with other values, as well.
#include "franca.h" // c5circ2.cpp

// This program moves a circle on the screen.
void drawing(Circle &mycircle,int x,int y,Box &coordx,Box &coordy)
{
 // This function draws one frame:
 mycircle.place(x,y); // Put the circle in place
 mycircle.show(); // Show the circle
 coordx.say(x); // Write coordinates in boxes
 coordy.say(y);
}

void mainprog()
{
 // Declaration of objects and variables:
 Box coordx(ìX:”),coordy(ìY:î); // Use boxes for x and y
 int x,y; // Declare coordinates
 Circle mycircle; // Declare a circle
 Clock mytimer; // And a clock
 int howmany;

 do
 {
 x=ask("Enter x coordinate:");
 y=ask("Enter y coordinate:");
 howmany=ask("How many circles?");
 for(int k=1;k<=howmany;k++)
 {
 drawing(mycircle,x,y,coordx,coordy);
 mytimer.wait(0.033);
 mycircle.erase();
 x++;
 }
 }
 while (yesno("Wanna try again?"));
}

How Does This Program Work?

The program above uses three Screen Objects:
• coordx

Copyright 2000, Paulo Franca – Download free from www.franca.com

148

• coordy

• mycircle

The objects coordx and coordy are boxes that display the current coordinates of the
circle. The object mycircle is a circle that is moved on the screen.

A drawing() function produces a frame. This function does as follows:
• Receives the circle, the coordinates, and the boxes as parameters
� Places the circle at coordinates (x,y)
� Shows the circle
� Writes the coordinates in the appropriate boxes
The main program consists of two essential parts:
� Initialization
� Loop
The initialization declares the objects and labels the boxes.
The loop is repeated as long as the user replies yes to the yes or no question at the end.

This loop requests that the user provide the x and y coordinates, as well as a number to specify how
many circles (each circle corresponds to a frame) will be drawn. An inner loop calls the
drawing() function several times to produce the frames.

Another alternative would be to declare and use a Clock inside the drawing()
function. In this case, the function could have the following code:
void drawing(Circle &mycircle,int x,int y,
 Box &coordx,Box &coordy)
{
 Clock mytimer;
 // This function draws one frame:
 mycircle.place(x,y); // Put the circle in place
 mycircle.show(); // Show the circle
 coordx.say(x); // Write the coordinates in boxes
 coordy.say(y);
 mytimer.watch(.033);
 mycircle.erase();
}

The drawing() function keeps the circle displayed for .033 seconds, and erases it
afterward. The wait() and the erase() could then be removed from the main function. As you
can see, there are many ways to design and implement your functions.

& To achieve a successful animation, keep the time that elapses between
erasing an object and showing it again to the minimum duration possible.

Try These for Fun…

� Modify the program c5circ2.cpp to make the circle move vertically, instead of
horizontally.

� Modify the program c5circ2.cpp to start with a circle of diameter 2, and increase
the diameter at each iteration.

� Modify the program c5circ2.cpp to draw the circle with a different color.

Copyright 2000, Paulo Franca – Download free from www.franca.com

149

Changing Coordinate Systems

It may not be convenient all the time to deal with coordinates in pixels. You may want to
use your knowledge of geometry to work with a different system of coordinates.

Changing the Point of Origin

The simplest thing to do is to change the point of origin. If you don’t wish to refer all the
points to the upper-left corner, you can redefine the point of origin for your coordinate system.

Suppose that you want your new point of origin to be 100 pixels horizontally and 150
pixels vertically from the upper-left corner. This is the same as saying that the coordinates of your
new point of origin are (100,150). If you want to place an object at the coordinates (x,y) using your
new point of origin, the only thing you have to do is to perform a simple operation on (x,y) before
you place the object on the screen.

In this case, the transformations are very simple. You can obtain a new set of coordinates
(x1,y1) as follows:
x1=x+100;
y1=y+150;

In more general terms, if the coordinate of your new origin is (x0,y0), you can use the
following expressions:
x1=x+x0;
y1=y+y0;

Notice that every time you want to draw an object in the position (x,y), you actually have
to draw it in the position (x+x0,y+y0).

Changing Scales

You may want to work with distances in centimeters, inches, or anything besides pixels. In
other words, you may want to change the scale.

This is also a simple operation. Suppose that in a space of 100 pixels, you want to
represent 1,000 of your new units (for example, if you want to represent 1,000 feet in a space of
100 pixels). What do you do? Since your scale is now 1,000 units per 100 pixels—or 10 units per
pixel—all you have to do is to divide your new coordinate by 10 to obtain the pixel coordinate.
Therefore, if your horizontal scale is scalex and your vertical scale is scaley, you can obtain new
coordinates by using the following expressions:
x2=x/scalex;
y2=y/scaley;

& You cannot represent anything that is smaller than 1 pixel on the screen.
In the example above, 10 feet will be represented by 1 pixel, which
means that the 10-foot mark, the 12-foot mark, and the 18-foot mark will
all be placed at the same location.

If you want to combine the change of the point of origin with the change of the scale, you
can use the following expressions:

Copyright 2000, Paulo Franca – Download free from www.franca.com

150

x3=(x+x0)/scalex;
y3=(y+y0)/scaley;

& The factor for your new scale is obtained by dividing the number of units
in your new coordinate system by the equivalent number of units in the
original coordinate system.

Changing Orientation

Finally, how can we make the vertical coordinate increase upward, instead of downward?
This is particularly relevant because most mathematical formulas use this notation.

What we want to do in this case is to simply change the sign of the vertical coordinate.
This can easily be done by multiplying it by a negative number. Why not use a negative scale then?

A value of –1 for scaley would be enough to invert the orientation of the vertical axis.
As an example, let’s use a different coordinate system that is located closer to the bottom

of the screen, and that has a vertical-axis orientation from bottom to top.
Here is what we have to do:
� Determine the coordinates of our new origin. Suppose that we decide to use the point

(50,400) as the new origin.
� Determine the scale and use a negative value for the vertical scale. Suppose that we

want each unit to be 60 pixels. We may then use scalex=1/60. and scaley=–1/60.
� Translate our coordinate to the computer coordinate by using the expressions above

every time an object is to be placed on the screen.
If we want to modify the program c5circ1.cpp to handle our new coordinates, the

solution is quite easy. Since we must make sure that the object is placed at the transformed
coordinates, we may simply correct the following statement:
mycircle.place(x,y); // Put the circle in place

This statement should now be as follows:
mycircle.place((x+50)/60.,(y+400)/(-60).);

& Do not forget to use both of the decimal points in the fraction! If the
fraction has no floating point numbers, the result will be only the integer
part, which in this case is zero!

This solution would work fine. However, it is a very simple program that places only one
object in only one spot. If many other statements placed objects on the screen, you would have to
include this new expression in all of them.

Also, if you decide later that either the point of origin or the scale was not well chosen, you
will again have to go through all those statements to use the new values. A better idea would be to
use functions to transform the coordinates. If you assume that you declare the following variables
globally:
float scalex=1./60.,scaley=-1/60.;
float x0=50.,y0=150.;

the functions could be as follows:

Copyright 2000, Paulo Franca – Download free from www.franca.com

151

float newx(float oldx)
{
 return (oldx+x0)/scalex;
}
float newy(float oldy)
{
 return (oldy+y0)/scaley;
}

and the circle should be placed using the following statement:
mycircle.place(newx(x),newy(y));

Try These for Fun…

� Modify the program c5circ1.cpp, which draws circles at given coordinates, to use
a new coordinate system with a point of origin at (50,400), and to scale 0.01 in each
direction. The vertical axis should increase upward.

� Modify the program c5circ1.cpp to request that you input the new point of origin
and scales.

No Need for New Functions

The good news is that you do not need to write functions or to modify your programs to
use a different coordinate system. A mechanism for changing the coordinate system is already
embedded in the Screen Objects.

By telling a Screen Object to scale(), you can change the scales for the horizontal and
vertical axes. Of course, if you supply a negative scale for the vertical axis, you will also change
the orientation of y. Notice that you will be changing the scale for all objects, not only for the
object to which you sent the message! Any drawings that are already on the screen will remain
unaffected, but any other object that you move, erase, or show will be subject to the new scale.

Similarly, you can change the point of origin of your coordinate system by telling any
screen object to origin(). For example:
Circle ball;
ball.scale(1.,-1.);
ball.origin(20,400);

causes the new origin to be located at (20,400), and causes the orientation of the vertical axis to
increase upward. The new coordinates are always expressed in pixels, using the original scale and
orientation. If an object is invoked to change either scale or origin, the new change will again affect
all objects.

& If you set different values for the horizontal and vertical scales, squares
and circles will be distorted! Also, you should place boxes in their
appropriate locations when you redefine scales. Otherwise, the
mechanism that automatically creates one box under another may
assign a location that is off the screen to your boxes.

Copyright 2000, Paulo Franca – Download free from www.franca.com

152

The Grid Object

Grid is an object that can represent the horizontal and vertical axes. Declare Grid like
you declare any other Screen Object. When the grid is shown, the horizontal and vertical axes will
be drawn to intersect at the point of origin (0,0).

Try This for Fun…

� Modify the program c5circ1.cpp to accept a
given point of origin and scale, as well as to
display the x-y axis.

Using Polar Coordinates

Another coordinate system that we may be interested in
using is the polar-coordinate system. In this system, instead of

expressing coordinates by the distances to the x and y axes, the coordinates are expressed by the
distance to the point of origin (called the radius), and by the angle made with the horizontal axis.

Figure 14.4 shows both coordinate systems. Point A
can be located by giving the (x,y) coordinates, or by giving the
distance from the origin (O) to A and the angle that the segment
OA forms with the horizontal axis.

Polar coordinates are very useful and easy to deal with when describing circular motions.
On the other hand, it is easier to manipulate objects on the computer screen using screen
coordinates. Since the screen coordinates are expressed in (x,y) form, it is interesting to learn how
to transform polar coordinates into (x,y) coordinates.

Given a point A, defined by the following polar coordinates:

Distance to origin: r=OA
Angle: w=xOA

we may compute as follows:
x = r* cos (w);
y = r* sin (w);

It is common to have the angle denoted by θ (the Greek letter theta).
If point O (the origin of the polar coordinate) is located at the coordinates (x0,y0) in the

(x,y) system, the expressions above can be modified as follows:
x = r* cos (w) + x0;
y = r* sin (w) + y0;

It is then possible to write a C++ function to transform a point from polar coordinates to
screen (x,y) coordinates. You may choose to write one function to obtain the x coordinate and
another function to obtain the y coordinate:
float coordx(float r,float theta, float x0)
{
 return r*cos(theta)+x0;
}
float coordy(float r,float theta,float y0)
{
 return r*sin(theta)+y0;
}

Or, you may choose to write a single function that computes the two values, and returns
them in one of the arguments:

Fig
14.4 Polar

Copyright 2000, Paulo Franca – Download free from www.franca.com

153

void polarxy (float r, float theta, float x0,float y0,
 float &x, float &y)
{
 x=r*cos(theta)+x0;
 y=r*sin(theta)+y0;
}

Either solution will work fine.

& The last two parameters, x and y, are passed by reference (they are
preceded by &). If this is not done, the function will not be able to alter
the values of the real arguments!

Are You Experienced?

Now you can…

Locate a point on the screen by using coordinates

Use Screen Objects such as Circles, Squares, and Boxes

Place, show, move, and erase Screen Objects anywhere on the screen

Change coordinate systems

Copyright 2000, Paulo Franca – Download free from www.franca.com

154

SKILL

FIFTEEN

CREATING ANIMATIONS

• Drawing function graphs
• Simulating movements on the computer screen
• Handling several Screen Objects at one time
• Completing a short project—Sun, Earth, Moon

Now that you know how to manipulate numbers to compute the coordinates of objects, you
can move them to produce an animation. The Screen Objects that you learned to use in Skill 14 can
be moved according to your instructions to produce an animation.

While you learn how to create animations, you will also learn how to use Screen Objects to
draw the graph of a mathematical function. This is a very simplified application of animation. You
don’t really have to be concerned with the speed at which you are moving, and the vertical
coordinate y is given by a mathematical function that depends on the value of the horizontal
coordinate x. While you learn how to draw functions, you will also learn how to pass a function
name as a parameter to another function.

The process of animation is very simple, and it essentially consists of repeating the
following steps:

1. Place the objects that you want on the screen in the desired location.
2. Show them for an appropriate amount of time.
3. Erase them.
When you have to deal with several Screen Objects that move together, the program may

become lengthy and repetitive. A new kind of Screen Object—the Stage object—will help you to
manipulate several objects as if they are only one object.

Drawing Mathematical Functions

Since you now know how to place and to move objects on the screen, and you also know
how to change coordinates and scales, it will be very easy to draw the graph of a function. Given a
mathematical function y=f(x), we can display the graph of this function by moving a dot (a small
circle) along the coordinates (x,f(x)).

Suppose that our function is y=x2–x+1, and that we want to view the graph between the
points x=–5 and x=20. It is a good idea to define the mathematical function as a C++ function:
float f(float x)
{
 return x*x-x+1;
}

This is a good solution, because if we want to compute the function somewhere else in the
program, we may simply refer to f(x), instead of writing the complete expression. Also, it will
make it much easier to draw the graph of a different function, as we will see later.

We must now place the dot at the initial point, and then move it to the final point. Of
course, we should not erase the points that we draw!

Copyright 2000, Paulo Franca – Download free from www.franca.com

155

Fig 15.1 The result of
c5sin.cpp

Moving a Dot

The procedure for drawing the function is very easy:
• Declare dot as a small circle.
• Repeat the steps below for different values of x, ranging from an initial value to a final

value, at small intervals (such as 0.01).
• Place dot at new coordinates.
• Show dot on screen.

In C++, this could be written as follows:
Circle dot; // Declare dot a circle
dot.color(7,7); // Use the color
dot.resize(2); // Make dot small
for (x=xstart;x<=xend;x=x+0.01) // Loop from xstart to xend
{
 dot.place(x,f(x));
// Place dot at x,y
 dot.show();
// Show dot
}

You must make sure that you do
not attempt to draw an object outside the
boundaries of your screen. Always
transform your expressions or use scales to
make sure that the ranges for x and y are
respected:

• x must be between 0 and 640
(both inclusive).

• y must be between 0 and 480
(both inclusive).

Of course, if you want to use scales
and to draw the x and y axes, it has to be
done before the function is drawn. It may
also be a good idea to transform the piece of program above into a function. Why? Functions are
easier to reuse at a later time. If you want to write another program to draw a mathematical
function, you can reuse the same function and save time. Shall we explore some alternatives?

The draw() Function

One possible idea is to take the code above and transform it into a C++ function. Initial
and final values for x can be specified as arguments, and we may assume that the coordinate
system is already set. This would result in the following code:
void draw(float xstart,float xend,int dotcolor=7)
{
 Circle dot; // Declare dot a circle
 dot.color(dotcolor); // Use appropriate color
 dot.absize(4); // Make dot small
 for (x=xstart;x<=xend;x=x+0.01) // Loop
 {
 dot.place(x,f(x)); // Place dot at x,y
 dot.show(); // Show dot
 }
}

In this case, the main program could be as follows:

Copyright 2000, Paulo Franca – Download free from www.franca.com

156

void mainprog()
{
 ...
 draw(-5.,20.);
}

A complete program is supplied to draw the sine function. The resulting screen is shown in
Figure 15.1.

Here is the program c5sin.cpp:
#include "franca.h"
#include <math.h>
 // c5sin.cpp
 // Program to draw graph of sin(x).
float f(float x)
{
 return sin(x);
}

void draw (float firstx,float lastx,int color=7)
{
 float x;
 Circle dot; // Declare dot a circle
 dot.color(color,color); // Use a colored dot
 dot.absize(4); // Make dot small
 for (x=firstx;x<=lastx;x=x+0.1) // Loop
 {
 dot.place(x,f(x)); // Place dot at x,y
 dot.show(); // Show dot
 }
}

void mainprog()
{
 // Use a grid, set scales and origin:
 Grid mygrid;
 mygrid.scale(20.,-20);
 mygrid.origin(50.,300.);
 mygrid.resize(10.);
 mygrid.show();
 const float pi=3.14159;
 float xstart=0.;
 float xlimit=8.*pi;
 draw(xstart,xlimit);
}

Using the draw() function is a reasonable solution to this problem. However, you must
always ask yourself whether there is anything you can do to make your solution more general and
more reusable. In this case, if you want to reuse the draw() function in the future, what kind of
obstacles might you face?

Two issues may arise:
• Scale—couldn’t the draw() function include a scale and axis definition?
• Function name—what if you want to draw a function that has a different name?
The scale problem is relatively easy to fix. You might request the data of the new

coordinate system as arguments to the draw() function, and declare your own Grid object in the
function. You may want to think twice before doing this. It would be a better idea to request that
the coordinate system is established before the function call.

Copyright 2000, Paulo Franca – Download free from www.franca.com

157

The function-name problem is more interesting. At first, you may not think it is very
relevant. After all, you could simply change the name of the function and reuse exactly the same
code. However, this is not true. There may be cases in which you want to draw the graphs of more
than one function in the same program. How would you do it?

It is simple—pass the function name as an argument to the draw() function.

Passing Functions as Arguments

C++ allows you to pass a function as an argument to another function. In other words, if
you have two functions, f1(x) and f2(x), that you want to use to draw a graph, it is possible to
redesign the draw() function to accept three arguments, instead of two. The new argument is the
name of the function. When you call the new drawf() function, you would use statements such
as the following statements:
drawf(f1,xstart,xend);
drawf(f2,xstart,xend);

This is not very different from the usual function call. We are providing three arguments:
the function to be used (f1 or f2), the starting value of x (xstart), and the ending value of x (xend).
The only thing that will be different is the declaration of the function drawf(). The original
draw() function was declared as follows:
void draw(float xstart,float xend)

The new drawf() function must have another parameter that specifies the function—but
the question is, What is the type of this argument? We know it is neither an int nor a float.
What could it be? This parameter is a function.

Functions as Parameters

Function types are declared by summarizing the appearance of the function. To do this,
you must include the following items:

• The return type (for example, float, void, etc.)
• A symbolic name with which to refer to the function (for example, func)
• The list of argument types inside parentheses (for example, (float))
In our example, the description of the drawf() function could be as follows:

void drawf (float func(float),float firstx,float lastx)
Notice that this function has three parameters:
• A function that takes a floating point variable as an argument, and that returns

float. This function is denoted by the symbolic name func.
• Two floating point variables. These variables are denoted by the symbolic names

firstx and firsty.
The complete function listing is shown below.

Copyright 2000, Paulo Franca – Download free from www.franca.com

158

void drawf (float func (float), float firstx,float lastx)
{
 float x;
 Circle dot; // Declare dot a circle
 dot.color(7,7); // Use a black dot
 dot.resize(2); // Make dot small
 for (x=firstx;x<=lastx;x=x+0.01) // Loop
 {
 dot.place(x,func(x)); // Place dot at x,y
 dot.show(); // Show dot
 }
}

When we place the dot using arguments x and func(x), the function whose nickname is
func will be called with x as an argument. The result will then be used as the vertical coordinate
to place the dot.

Try This for Fun…

• Develop a program to draw
the graph of the sine and
cosine functions. The sine
should be drawn in red, and
the cosine should be drawn
in blue. Hint: the sine and
cosine functions are
available if you include the
header file math.h. The
resulting screen should look
like Figure 15.2.

Producing Animations

We will now use Screen Objects to produce an animation. A simple animation was already
introduced with the program c5circ2.cpp. This section shows you how to use Screen Objects
to illustrate some of the movement equations you may know from physics.

Creating the Illusion of Movement

It is possible to simulate movement on the computer screen in the same way it is done in
motion pictures—by providing different images after small intervals of time. This approach
enables you to produce several kinds of animations.

One of the easiest animations is to express all movements by a mathematical formula. This
is the case in many physical phenomena. Several of the phenomena studied in physics have
equations that can determine the position of a given body.

Fig 15.2 Sine and Co-sine

Copyright 2000, Paulo Franca – Download free from www.franca.com

159

Simulating Composite Movements

Suppose that there is a body in movement, and that you know the equations x=dist(t) and
y=height(t) that specify the horizontal distance to the origin (x) and the height above the ground (y).

As they usually do in physics, these equations express x and y as functions of the time (t).
Some examples follow.

Uniform horizontal movement
Here is an example of uniform horizontal movement:

x=speedx*t+x0;
y=y0;

in which speedx is a constant horizontal speed, and y0 is any constant value. A constant x0 is
included to set an initial horizontal position for the body.

Uniform horizontal and vertical movement
Here is an example of uniform horizontal and vertical movement:

x=speedx*t+x0;
y=speedy*t+h0;

in which speedx and speedy are constant speeds in the horizontal and vertical directions,
respectively.

Uniformly accelerated movement
If the body is subject to a constant acceleration, the following lines may also be included in

the equations:
x=accx*t*t/2+speedx*t+x0;
y=accy*t*t/2+speedy*t+y0;

If you look carefully, you might notice that as long as you provide the functions dist(t)
and height(t), the movement simulation will be exactly the same no matter what kind of
movement we are trying to simulate.

If the functions are properly written, we can develop a program to produce an animation
using the following strategy:

• Declare a Screen Object to represent the moving body (a circle, for example).
• Declare a Clock object to keep track of the time.
• Perform a loop causing a standard interval of time to elapse from one frame drawing

to the next (for a smooth animation, use 1/30 of a second). This loop will consist of the
following items:

1. Compute the new coordinates as functions of time.
2. Move the body to the new position.
3. Show the body.
4. Wait for the time interval to exhibit the next frame (1/30 of a second).
5. Erase the body from the screen.

Our next piece of program will do all of the above.

A body in free fall
The program c5body.cpp assumes two functions dist(t) and height(t) to

compute the x and y coordinates of a moving body. The current coordinates of the moving body
and the current value of time are displayed in appropriate boxes.

Copyright 2000, Paulo Franca – Download free from www.franca.com

160

#include "franca.h" // c5body.cpp
#include "math.h"
Grid mygrid;
// Use standard coordinates:
const float v0x=10.,v0y=20.;
float dist (float t) // Function to determine
{ // the x coordinate
 return v0x*t+10;
}

float height (float t) // Function to determine
{ // the y coordinate
 return v0y*t+50.;
}

void mainprog()
{
 // Declare and label boxes for displaying
 // x, y, and time:
 Box boxx("x:"),boxy("y:"),boxt("Time:");
 mygrid.show(); // Show axis
 float t; // t is the time
 Circle body; // Declare the body
 body.resize(12); // Size it at 12
 body.color(3,3); // Color it
 Clock timer; // Declare a timer clock
 Clock mywatch; // Declare another clock
 // The loop below will be repeated
 // as long as the time is less than 15 seconds.
 // Note that the current time is copied into
 // the variable t:
 while ((t=mywatch.time())<15.)
 {
 boxx.say(dist(t)); // Update value of x, y,
 boxy.say(height(t)); // and time in the
 boxt.say(t); // appropriate boxes
 body.place(dist(t),height(t)); // Place the body in
 // current location
 body.show(); // Show the body
 timer.watch(.033); // Wait until timer reaches
 timer.reset(); // .033 seconds and reset
 body.erase(); // Erase the body
 }
}

The program simply follows the general strategy mentioned above, and, by now, you
should be able to understand how it works. However, it may be worthwhile to explore a few items.

Using Two Clocks

There are two objects of type Clock declared, mywatch and timer. We use one as a
regular watch (such as your wristwatch) and the other as a stopwatch (a timer). The stopwatch is
really handy because it will make it easier for us to draw a new frame every .033 seconds.

The while Expression

There is a very tricky expression used in the while statement. We want to keep looping
while time is less than 15, but we also want to copy the value of time into the t variable. We
could solve this problem by using two separate steps:

Copyright 2000, Paulo Franca – Download free from www.franca.com

161

while(mywatch.time()<15)
{
 t=mywatch.time();
 ...

In this case, this would work fine. However, you may notice that the value assigned to t is
a little greater than the value tested in the while expression.

You might be tempted to use an expression as follows:
while (t=mywatch.time()<15)

instead of using:
while ((t=mywatch.time())<15.)

Unfortunately, the first expression will produce an incorrect result! Expressions are
evaluated in C++, and then the value is assigned to the variable on the left side of the equal sign.
First, time is compared with 15, and this comparison produces a result—the integer 1, which
stands for true. Then, this result is assigned to t. As you can see, as long as time is less than 15,
the value of t will be 1.

Using the watch member function is more convenient for simulating than using the wait
member function, because you can make the frames appear at more precise intervals. The time that
it takes for the computer to prepare the next frame is implicitly added when you wait, but not
when you watch.

Handling More Generic Movements

The example above uses functions that represent the equations of uniform movement in
both coordinates. As a result, you will see the circle move in a straight line at a constant speed
when you run the program. However, the same program can be used for any kind of movement. All
we have to do is to change the function definitions!

As an example, let’s simulate a body that is dropping while moving horizontally at a
constant speed. In this case, the equations for the x coordinate will still be the same as above, but
the equations for the y coordinate will be as follows:

y=h0 + v0y t – 1/2 g t 2

or, in C++:

y=h0+v0y+0.5*g*t*t ;
The following items are assumed:
• h0 is the initial height at time t=0.
• v0y is the initial vertical speed at time t=0.
• g is the gravity acceleration (9.81 m/s2 or 32.18 ft/s2).
• The body is dropped with no vertical speed—v0y=0.
The function height(t) could then be defined as follows:

float height(float t)
{
 const float h0=200.,g=32.18;
 return h0+0.5*g*t*t;
}

ON GLOBALLY DEFINED CONSTANTS AND VARIABLES…

The functions we are using in this section can have variables other than the time
(for example, h0, V0, and g). If so, try to use these variables as arguments to the function,
as well. A previous example used V0x and V0y as globally defined constants to avoid
passing them as arguments. Although the practice of using global constants may not be
harmful to your programming habits, the practice of using global variables should be
avoided.

Copyright 2000, Paulo Franca – Download free from www.franca.com

162

Substitute the definition above for the function height(t) in the program
c5body.cpp, and then run it to see the results. But wait—if you do only this, your body will
drop until it falls off the screen. After all, there is no floor to hold it! It may be a good idea to check
the height, and to stop the program when the height becomes negative. There are two alternatives:

• You can expand the condition in the while statement so the loop is repeated while
the time is less than 15 and while the height is greater than or equal to zero. For
example:

while (((t=mywatch.time(t))<15.)&&(height(t)>=0))

� Notice the parentheses in the statement above!

• You can test height(t) in the loop, and then break out of the loop if the result is
negative. For example:

if (height(t)<=0) break;

Try This for Fun…

• Modify the program c5body.cpp to simulate a body in free fall. Stop the
simulation when the body reaches the height of zero.

Efficiency Matters

It is a well-known fact that computers are very fast at their work. However, it is up to the
programmer to avoid unnecessary work for the computer, so all the computations can be done in
the appropriate time. If you look in the program c5body.cpp, you may notice that the functions
dist(t) and height(t) are called twice in the loop. There is nothing wrong with that, except
that both times the functions are called with the same value of t—both calls will result in the same
value!

Is that a smart way to use the computer? Not really. If you compute a value and expect to
use it several times in the program, you may be better off to keep this value in a variable, and then
to avoid computing it over and over again. In this case, you could declare two additional variables:
float x,y;

and then modify the loop as follows:
while ((t=mywatch.time())<15.)
 {
 x=dist(t);
 y=height(t);
 boxx.say(x); // Update value of x, y,
 boxy.say(y)); // and time in the
 boxt.say(t); // appropriate boxes
 body.place(x,y); // Place body in
 // current location

If you want to be really fancy, you can assign the values to x and y, and tell the boxes to
say:
boxx.say(x=dist(t));
boxy.say(y=height(t));

� This second alternative does not bring significant savings, and it may
make your program less legible.

Copyright 2000, Paulo Franca – Download free from www.franca.com

163

Another issue is the use of expressions that use constants, such as 1./2. The computer will
actually divide 1 by 2 every time this expression is found in the program. You can save time by
using the equivalent value of 0.5. You can also define a constant or a variable that has the value
you want to use. For example:
const float pi2=3.14159/2;

Then, use pi2 in the program.

Simulating a Cannonball

Our next simulation deals
with a cannon firing at different
angles. As the cannonball starts to
move, it has a velocity in the
direction that the cannon is firing.
This direction is given by an angle
theta. As you may know from
physics, you can deconstruct this
velocity into components:

velocx=veloc*cos(theta)
velocy=veloc*sin(theta)
The movement of the

cannonball can then be expressed by
the functions dist(t) and
height(t). Horizontally, the
cannonball moves at a constant speed
(uniform movement), whereas
vertically, its movement is subject to
the acceleration of gravity.

The functions could be defined as follows:
const float g=32.18; // Gravity
// Functions to compute coordinates:
float dist(float velocx,float t)
{
 return velocx*t;
}
float height(float velocy,float t)
{
 return velocy*t - 0.5 * g * t * t;
}

You can define g as a global constant.
The main program should request that you give the angle theta and the initial velocity

veloc. The program then computes the values of velocx and velocy. After doing this, the
program can simulate the movement as seen in previous programs.

� Remember that trigonometric functions require that angles are
expressed in radians, so we should convert them before we use them.

Computing the Cannonball’s Coordinates

The program c5cannon.cpp implements the simulation of the cannonball being fired.
The program is straightforward, and it includes the following items:

Fig 15.3 c5cannon at a
certain point in time

Copyright 2000, Paulo Franca – Download free from www.franca.com

164

• Functions that determine
distance and height

• Setting of initial conditions
• Simulation loop
The functions have already been

explained. The setting of initial conditions
determines scales, draws the x-y axis,
creates the circle that represents the
cannonball, and initializes the clocks
needed for the simulation. Only one of
these issues may confuse you—the setting
of scales.

The scales should be set to
accommodate all the objects we want to
draw on the screen. It is necessary to look
at the height() and dist()
functions to determine the maximum
values that will be used for x and y.
Unfortunately, these values depend on the values that are input for the velocity and the angle. One
thing that makes computer programming difficult is that you don’t always know how your
programs are going to be used!

The best we can do is to make a
reasonable guess. If we assume a speed
such as 1,000 feet per second, we may
find that the horizontal distance can reach
a little less than 30,000 feet, with a 45-
degree angle (which gives the maximum
range). If the cannon is fired at a 90-
degree angle (gosh—who is in charge of
this cannon?), the maximum height will be
a little more than 15,000 feet.

It is a good idea to use the same
scale for both axes, because both axes
represent distances. Therefore, we can
assume a maximum of 30,000 feet for
both height and distance.

Calculating for VGA
On the other hand, even though

our screen can usually accommodate 640◊480 pixels, it may be a good idea to restrict the pictures
to a smaller area—for example, 400◊400. This means that the 30,000 feet we will show in the
simulation should fit in 400 dots on the screen. As a result, our scale, which expresses how many
dots there are per foot, will be 400/30,000.

� If you ever become confused while computing scales, it will help you to
consider the units. In the case above, we had 30,000 feet to correspond
to 400 dots. At first, you may be confused: should you use 400/30,000 or
30,000/400? If you include the units, which would be dots per foot in the
first case and feet per dot in the second, you will notice that the second
alternative gives you square feet per dot as a result when you multiply
the distance (in feet) by your scale. Of course, this is wrong!

Fig 15.4 c5cannon at a
later time

Fig 15.5 c5cannon yet
even later

Copyright 2000, Paulo Franca – Download free from www.franca.com

165

The Simulation Loop

The most interesting part of the program appears in its second part—the simulation loop.
The loop is repeated while the time, as reported by the sidereal clock, is less than 50 seconds. In the
loop, new coordinates are computed for the new value of time. The circle is then erased from the
old position, placed in the new position, and then shown. The stopwatch is then instructed to wait
for 0.033 seconds, so we can see the frame on the screen. After this, the stopwatch is reset, and the
loop resumes.

Figures 15.3, 15.4, and 15.5 show the results of executing the cannonball simulation
program at different times.

The listing for the c5cannon.cpp program is shown below.
void mainprog() // Part 1
{

 Grid mygrid;
 mygrid.origin(50.,420);
 mygrid.scale(400./30000,-400./30000);
 // Declare and label boxes for displaying
 // x, y, and time:
 Box boxx("x:"),boxy("y:"),boxt("Time:");
 Box vx("Vx:"),vy("Vy:");
 mygrid.resize(30000.);
 mygrid.show(); // Show axes
 float t; // t is the time
 Circle body; // Declare the body
 body.absize(10.); // Size it
 body.color(3,3); // Color it
 Clock timer; // Declare a timer clock
 Clock watch; // Declare another clock
 float theta,veloc,velx,vely;
 // Request data:
 theta=ask("Enter angle of firing:");
 theta=theta*3.14159/180.;// Convert to radians
 veloc=ask("Enter initial velocity:");
 velx=veloc*cos(theta); // Deconstruct into x and y
 vely=veloc*sin(theta);
 vx.say(velx);
 vy.say(vely);
 float x,y; // c5cannon.cpp—Part 2

Copyright 2000, Paulo Franca – Download free from www.franca.com

166

 // The loop below will be repeated
 // as long as the time is less than 15 seconds.
 // Note that current time is copied into
 // the variable "t":
 timer.reset();
 watch.reset();
 while ((t=watch.time())<50.)
 {
 y=height(vely,t);
 if (y<0) break;
 x=dist(velx,t);
 boxx.say(x); // Update values of x, y,
 boxy.say(y); // and time in the
 boxt.say(t); // appropriate boxes
 body.erase();
 body.place(x,y); // Place the body in current location
 body.show(); // Show the body
 timer.watch(.033); // Wait until timer reaches
 timer.reset(); // .033 secs and reset
 }
}

Try These for Fun…

� Use the dist(t) and height(t) functions to write a program that finds the
maximum value of height for given values of velocity and angle. Use boxes to display
the current values of distance, height, and time, and to display the maximum value that
was observed of height. You can use the general structure of the cannonball program.

� Modify the c5cannon.cpp program to find the maximum distance reached by the
cannonball, which is the value of x when height drops to zero.

Handling Multiple Screen Objects—the Stage Class

There are cases in which you have an object that can be drawn as a set of other Screen
Objects. Remember the athletes? How can you draw one of
them?

The athlete figure, like the figure of most real people, is
represented by the following parts:

� Head—represented by a circle
� Trunk—represented by a square
� Left and right arms—represented by rectangles
� Left and right legs—represented by rectangles
For the sake of simplicity, we use only two values for

sizing the body parts. We can call these values L and W, as
shown in Figure 15.6. The head is a circle whose radius is

given by the value of L. The arms and the legs are rectangles whose width is given by the value of
W, and whose length is given by the value of L. The trunk is
a square whose sides are each given by the value of L.

Fig
15.6 An

Copyright 2000, Paulo Franca – Download free from www.franca.com

167

Building an Athlete Piece by Piece

Can you draw an athlete? There’s the hard way, and there’s the easy way. You may start
by declaring the objects that represent the body parts (the hard way!). A little later, you will learn
how to use the Stage class (the easy way!).
Circle head;
 Square trunk;
 Square leftleg,rightleg;
 Square leftarm,rightarm;

Since we know how to deal with circles and squares, all we have to do now is to position
these objects in the right places, and to assign them the appropriate colors and sizes.

Assume that the athlete is enclosed by a square whose center has the coordinates x and y.
Furthermore, let’s declare some constants to hold the values of W and L, using the names
armwidth for W and armsize for L.
 const int armsize=20;
 const int armwidth=6;

Coloring Your Athlete

The following statements can be used to color the objects:
 head.color(5,5);
 trunk.color(5,5);
 leftarm.color(3,3);
 rightarm.color(3,3);
 leftleg.color(3,3);
 rightleg.color(3,3);

Scaling Your Athlete

Next, you can make all the objects assume the appropriate sizes:
 head.resize(2*armwidth);
 trunk.resize(armsize);
 leftarm.resize(armsize,armwidth);
 rightarm.resize(armsize,armwidth);
 leftleg.resize(armsize,armwidth);
 rightleg.resize(armsize,armwidth);

Placing Your Athlete

Then, you can place all the objects:
 head.place(x,y-armsize/2.-armwidth);
 trunk.place(x,y);
 leftarm.place((x-(armsize+armwidth)/2.),y);
 rightarm.place((x+(armsize+armwidth)/2.),y);
 leftleg.place(x-(armsize/2.-armwidth),y+armsize);
 rightleg.place(x+(armsize/2.-armwidth),y+armsize);

Showing Your Athlete

Finally, you can now show all the objects:

Copyright 2000, Paulo Franca – Download free from www.franca.com

168

head.show();
trunk.show();
leftarm.show();
rightarm.show();
leftleg.show();
rightleg.show();

You are welcome to try these statements to draw an athlete. However, you may want to be
patient and learn how to use the Stage class in the next section.

Using the Stage Class

The Stage class handles a group of Screen Objects as if they are all bonded together.
Objects of class Stage are also of class ScreenObj. Therefore, Stage has

coordinates, and can be shown and erased. However, Stage objects do not have a shape. Instead,
you can insert several other Screen Objects in the Stage object, and when you instruct the
Stage object with show(), all the objects that were inserted will be shown.

In addition to the usual operations you can perform with a Screen Object, you can perform
an operation called insert in a Stage object. By using insert, you can insert any Screen
Object into the Stage object.

& You can also insert a Stage object into another Stage object.

As you know by now, an athlete is composed of several objects. If you want to move the
athlete on the screen, you will have to perform the following operations on each object that makes
up the athlete:

� Erase the object from the old location.
� Move the object to the new location.
� Show the object in the new location.

Stage Saves Time and Trouble

If we use a Stage class, we can perform the same operations with all the objects in the
Stage object by sending the appropriate message only once to the Stage object! In other words,
instead of showing the head, left arm, right arm, etc., all we have to do is to show the athlete.
Stage body;
body.place(x,y);

It is important to place the Stage object appropriately, because when the Stage object
is placed somewhere else, all the objects in the Stage object will also be moved!

All we have to do now is to insert each object in the Stage object (just once):
body.insert(trunk);
body.insert(leftarm);
body.insert(rightarm);
body.insert(leftleg);
body.insert(rightleg);

If we want to move the whole Stage object to a new location x1,y1, we can use the
following statements:
body.erase();
body.place(x,y);
body.show();

Of course, this is much simpler than having to erase, place, and show each part
individually.

Copyright 2000, Paulo Franca – Download free from www.franca.com

169

A Short Project—Sun, Earth, Moon

This short project for Skill 15 simulates a simplified planetary system. Suppose that you
were hired by your physics instructor to develop a visual animation of Earth revolving around the
Sun, while the Moon revolves around Earth.

This software should represent the movement of these bodies on the computer screen. It
makes no sense to try to keep the planet sizes and the distances between them proportional, because
Earth and the Moon would not be visible on the screen!

Instead, you can choose an arbitrary size (diameter) for each body, as well as an arbitrary
distance from one body to another body. We will also represent these movements as circular,
instead of as elliptical as in real life.

However, it is important to keep the time in proportion. For example, 1 second in the
simulation could correspond to 1 day in real life. This may still be too slow for our purposes—a
complete simulation involving a 365-day year would take 365 seconds to complete. Your fellow
students may be too impatient to sit and watch for that long! You may try to simulate each 10th of
a second as a day in real life.

& While you work through this project, remember that Earth takes 365.25
days to complete a revolution around the Sun, and that the Moon takes
28 days to complete a revolution around Earth.

Once you have declared and initialized the Sun, Earth, and the Moon as objects of class
Circle, the simulation itself is relatively easy to carry out.

The position of each body is merely a function of time. Each body can be erased from its
position, placed in the new position, and then redrawn. Polar coordinates come in really handy in
this case. Since the angular speed is known for Earth and the Moon, the angle can be determined as
a function of time.

Useful Objects for Your Planetary Project

It is easy to imagine that we can use objects of class Circle to represent the Sun, Earth,
and the Moon. You can declare these objects as follows:
Circle Sun, Earth, Moon;

These objects must be initialized with an appropriate size, color, and initial position.
Figure 15.7 displays a convenient initial position. In this case, all the bodies are

horizontally aligned when the simulation starts. As stated before, the distances between them are
arbitrary, and it is a good idea to use a named constant to experiment with these distances and
sizes.

Copyright 2000, Paulo Franca – Download free from www.franca.com

170

You may try the following statements:

const float earthradius=160.,moonradius=40.;
const float earthsize= 20., moonsize=8., sunsize = 40.;

Don’t Forget the Stage Class!

It may not be obvious at first, but you may also consider using an object of class Stage.
During the simulation, you will have to erase and redraw Earth and the Moon. If you include all
the objects that are to be erased and redrawn in a Stage object, you can save yourself some lines
of code. Here is what I suggest:
Stage universe;
universe.insert(Sun);
universe.insert(Earth);
universe.insert(Moon);

You will also need a Clock object to keep track of time. In fact, it would be convenient to
use two clocks. One clock can be used to keep track of the simulated time and can be continuously
displayed, so the users know the day of the year. Another clock can be used just to pace the frames
at 30th of a second intervals.
Clock universal, clock stopwatch;

Initialization

To get started, we have to declare, size, place, and color our planets.
In other words, these Screen Objects have to be initialized.

Fig 15.7 Initial positions for Sun, Earth and
Moon

Copyright 2000, Paulo Franca – Download free from www.franca.com

171

Scaling
Since all the distances were arbitrarily chosen, there is no need for a specific scale. It may

be convenient to use a negative vertical scale, so you can work with the convention that is used in
geometry. It may also be a good idea to set the point of origin near the center of the screen, and to
locate the Sun in that position.

Any object can be used to set up the scale and the point of origin. For example:
universe.scale(1.,-1.);
universe.origin(250.,250.);

Positions
The initial cartesian coordinates could be set as follows:

Sun: x=0; y=0;
Earth x=earthradius; y=0;
Moon x=earthradius+moonradius; y=0;

The complete initialization is implemented below.
const float earthradius=160.,moonradius=40.;
const float earthsize= 20., moonsize=8., sunsize = 40.;
Stage universe;
universe.origin(250.,250.);
universe.scale(1.,-1.);
// Set Sun's data:
Circle sun; // Declare the Sun’s shape
float xsun=0,ysun=0; // Initial coordinates
sun.resize(sunsize);
sun.color(6,6);
sun.place(xsun,ysun);
universe.insert(sun);

// Set Earth's data:
Circle earth; // Declare Earth's shape
float xearth=earthradius,yearth=0.; // Initial coordinates
float wearth=(2*pi)/365.25; // Angular speed in radians per day
earth.resize(earthsize);
earth.color(5,5);
earth.place(xsun+earthradius,ysun);
universe.insert(earth);

// Set Moon's data:
Circle moon;
float xmoon=moonradius,ymoon=0;
float wmoon=(2*pi)/27.; // Angular speed
moon.resize(moonsize);
moon.color(1,1);
moon.place(xsun+earthradius+moonradius,ysun);
universe.insert(moon);

Copyright 2000, Paulo Franca – Download free from www.franca.com

172

The Simulation Loop

As usual, the simulation loop consists of producing frames at regular intervals. Earth and
the Moon have to be moved to their new locations before they are redrawn.

Here is the general procedure in the simulation loop:
� Erase the universe.
� Compute Earth’s new location.
� Place Earth in new location.
� Compute the Moon’s new location.
� Place the Moon in new location.
� Show the universe.
� Display the time.
� Wait for the time to show the next frame.

Where Is Earth?

Can you figure out where Earth is at any given time t? Remember that Earth takes 365.25
days to complete its revolution around the Sun.

You can compute the angular speed either in degrees:
w = 365.25 / 360 degrees per day;

or in radians:
w = 365.25 / (2*pi) radians per day;

The angular speed wearth can be used to compute the angular position of Earth on any
given day, represented by time:
thetaearth= wearth * time;

Now, since the Sun is at the point of origin, you can use earthradius (distance from
the sun) and this angle as polar coordinates to compute the cartesian coordinates.

If you simply issue a call to the polarxy function:
polarxy(earthradius,wearth*time,xsun,ysun,xearth,yearth);

you will return the cartesian coordinates in xearth and yearth.

Where Is the Moon?

In a similar way, you can determine the cartesian coordinates of the Moon. Remember that
all that is needed is to find out the angle. When you call the polarxy function, consider your
point of origin to be Earth:
polarxy(moonradius,wmoon*time,xearth,yearth,xmoon,ymoon);

The piece of program below implements the simulation loop.

Copyright 2000, Paulo Franca – Download free from www.franca.com

173

for (;time<365.25;)
 {
 universe.erase();
 polarxy(earthradius,wearth*time,
 xsun,ysun,xearth,yearth);
 earth.place(xearth,yearth);
 polarxy(moonradius,wmoon*time,
 xearth,yearth,xmoon,ymoon);
 moon.place(xmoon,ymoon);
 day.say(time);
 universe.show();
 stopwatch.watch(.033);
 stopwatch.reset();
 time=sidereal.time()*timescale;
 }

For this simulation loop, there is a variable timescale that can make the simulation run
faster or slower. timescale is defined as 10, which means that each day in the simulation lasts
a 10th of a second. This loop only checks whether the simulation time is greater than 365.25 (the
end of the year).

The complete implementation can be found in the program c5stars.cpp.

Try These for Fun…

� Modify the c5stars.cpp program so the Moon’s orbit is shown. To do this,
simply avoid erasing the Moon in the loop.

� Modify the c5stars.cpp program so the background is shown in blue instead of in
white

Copyright 2000, Paulo Franca – Download free from www.franca.com

174

Are You Experienced?

Now you can…

Use a moving object to draw a function graph

Move an object with appropriate timing to simulate a real-life movement

Use Stage objects to manipulate several Screen Objects at one time

Develop a simulation of Earth and the Moon revolving around the Sun

